首页> 外文OA文献 >The Train Driver Recovery Problem - a Set Partitioning Based Model and Solution Method
【2h】

The Train Driver Recovery Problem - a Set Partitioning Based Model and Solution Method

机译:列车司机恢复问题 - 基于集合划分的模型及求解方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The need to recover a train driver schedule occurs during major disruptions in the daily railway operations. Based on data from the Danish passenger railway operator DSB S-tog A/S, a solution method to the train driver recovery problem (TDRP) is developed. The TDRP is formulated as a set partitioning problem. We define a disruption neighbourhood by identifying a small set of drivers and train tasks directly affected by the disruption. Based on the disruption neighbourhood, the TDRP model is formed and solved. If the TDRP solution provides a feasible recovery for the drivers within the disruption neighbourhood, we consider that the problem is solved. However, if a feasible solution is not found, the disruption neighbourhood is expanded by adding further drivers or increasing the recovery time period. Fractional solutions to the LP relaxation of the TDRP are resolved with a constraint branching strategy using the depth-first search of the Branch & Bound tree. The LP relaxation of the TDRP possesses strong integer properties. We present test scenarios generated from the historical real-life operations data of DSB S-tog A/S. The numerical results show that all but one tested instances produce integer solutions to the LP relaxation of the TDRP and solutions are found within a few seconds.
机译:在日常铁路运营的重大中断期间,需要恢复火车司机的时间表。根据丹麦客运铁路运营商DSB S-tog A / S的数据,开发了一种解决列车驾驶员恢复问题(TDRP)的方法。 TDRP被公式化为集合分区问题。我们通过识别一小组驾驶员和培训受干扰直接影响的任务来定义干扰邻域。基于破坏邻域,形成并求解了TDRP模型。如果TDRP解决方案为中断社区内的驾驶员提供了可行的恢复方法,则我们认为问题已解决。但是,如果找不到可行的解决方案,则可以通过添加更多驱动程序或增加恢复时间来扩展中断邻域。通过使用Branch&Bound树的深度优先搜索,使用约束分支策略解决TDRP LP松弛的分数解。 TDRP的LP弛豫具有很强的整数性质。我们介绍了根据DSB S-tog A / S的历史真实操作数据生成的测试方案。数值结果表明,除一个测试实例外,所有实例都为TDRP的LP松弛产生整数解,并且在几秒钟内找到了解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号